Featured

Follower photo

I posted on Instagram lately that I was after the best image of PASSIVE Gardening. I was so touched when I saw the response:

img_2295

Elora L. sent this among a couple other images she’d taken with her astoundingly high quality camera and artistic eye. I responded:

Elora, I don’t know quite what to say. Thank you? Let me know if there’s anything I can do to compensate you for this artful expression -if that’s possible.

….The one with the vines is pure genius. It’s to die for.

Featured

Growing annuals

I’m always writing about perennials and no till, but I actually do a lot of annual gardening. My family’s farm has a CSA for about 20 shares that uses about 3 acres of tilled gardens.

Mortal Tree is my exposition on alternative methods, so of course I wanted to try growing annuals in a passive, no till setup.

That’s what the keyholes at the front were supposed to be; with perennials thrown in for propagation, and greater efficiency.

After two years of the first “system” (or lack thereof) there are two problems: lack of fertility, and weeds. Of course everyone has those problems, but the system was supposed to keep these to a tolerable level.

As it is, aside from mache, annuals just aren’t satisfied with the fertility. This year I didn’t harvest anything but what the perennials willingly supplied.

Ideal weed level is pulling a few weeds as I inspect the garden on a pleasant evening. Instead, I found myself clearing whole beds only to have them full of weeds again in a month.

I’ve scrutinized the system and found two problems: lack of mulch and lack of fertility in general.

img_2310

The year of high fertility

I got the idea I wasn’t cycling enough nutrients from the lack of vigor the annuals and their self seeding progeny showed. I wasn’t sure how much more I needed. Normally the tillage and compost in the big gardens makes everything grow without complaint. Now that I’m trying to make this work with comfrey and other in-system nutrients, without tillage, it’s not.

Martin Crawford has several tables in Creating a Forest Garden that really pin down nutrients and how much different plants need, and how much different sources offer. He has a light, moderate, and heavy cropping category, then annuals.

Most of the perennial vegetables he places in the light cropping category. It takes about two cut comfrey per square meter to sustain these plants, which is about what I am applying. To sustain annual cropping takes 60 cut comfrey for that same area. Problem found.

The amount of fertility I’m accustomed to working with in the annual gardens is simply an unnatural surge of nutrients. Compost is extraordinarily rich in nutrients compared to bulk green mulch.

Also, tillage forces more oxygen into the soil, breaking down those nutrients at a faster rate. The keyholes had this advantage at first because I dug out the paths and piled up the soil to make the beds.

Problem is, the mulch apparently needed for the annuals would drown most of the perennials. In response I’m moving all the perennials out, and making the keyholes completely annual.

The best comparison I have for this so far is a keyhole bed I have near the Willow Garden in its fourth year of no till.

img_2309

It has a dug out path and raised beds too. It has one comfrey for its mulch and fertility source. As a result, I’ve had to bring in more mulch to sustain the system.

For instance, I brought in a lot comfrey from the Willow Garden to drown out some quack grass (Agropyron repens) that had moved in. It was rather effective at suppressing it. Besides some vegetable mallow over the summer, it was enough to grow some nice cabbages.

In the food forest, I’m not supplying 60 cuts of comfrey per keyhole per year. I’ve got 12 beds with an average of 1.3 square meters each. It would take several hundred plants.

When faced with a large surge of energy in a design, I always try and disperse the blow across many sources.

img_2308

Young regrowth on a coppiced amorpha

According to Martin’s fertility tables, one amorpha, based on mature canopy size of about six feet in diameter, provides the equivalent nitrogen of 20 cuts of comfrey, or 10 comfrey plants; lespedeza about the same. I’ll throw some of these in the patch so the roots sloughing off after coppicing can feed the comfrey. They need nitrogen themselves.

This still requires more space than I’ve allocated to the annual’s mulch patch. So I’ll grow some annual cover crops on the keyhole beds once in a while to fill the gap -careful to choose crops that will die when cut, frosted, or heavily mulched since there won’t be any tilling.

To really cinch the deal I have the food forest rabbit’s manure. I let a bucket of it sit out to catch rain, and harvest the resulting “tea” to feed establishing beds right now. In time it can be exclusively for the annuals.

Achieving this much mulch in the food forest will take a while. I’m moving out the perennials first, and planting the whole thing in lots of annual cover crops. The first plant to start yeilding mulch will likely be comfrey, though I might just mulch their own patch the first year to ensure they are established. The next year the N-fixers will be ready for light coppicing, then full production. I’m assuming three years before that point, but I’m quite excited to the see the results. I’ll keep you posted as it goes along.

Featured

Amorpha regrowth 2: the results

Frost came and the Amorpha is done growing for the season. Check out this year’s growth.

img_2307

Visually impressive I know. It’s actually lacking 2 ft of what I expected. If you’ve read Dealing with deficiency earlier this summer, you probably noticed this season wasn’t stellar for lush growth.

Compared to the nearby cherry that yellowed and lost its leaves several months ago, the amorpha did quite well, remaining green and vibrant, growing for a lot longer than other plants in the food forest. Early September even it slowed down and aborted its growing tip, calling it quits for the year.

Last year it grew right until frost in October. If the same had occured this year, I suspect it could have grown that extra 2 ft and more.

I plan on coppicing again next year. A lot of my seedling Amorpha I coppiced lightly this year though, just removing a branch or two to which they responded well. So I may have more genetics in different locations to compare with next year. I’ll keep you posted.

Featured

Black walnut suitable crops

willsull-netresourcesscottsullivanblackwalnut-pdf

In pdf. form. You may have to copy and paste the link into your browser to make it work.

This paper really picks apart the effects of juglone, its production levels, area of effect, and all the possibilities of growing crops under its influence. Written with permaculture in mind.

I especially like their recommendation to plant black alder (Alnus glutinosa) as a nurse crop between your rows of black walnut. Since they’re sensitive to the allelopaths, they die out. But in the meantime you’ve grown poles for coppicing, and leave a whole stump and root system to slowly release nitrogen to the walnut crop -an excellent example of systematic development by filling niches in time.

Featured

Summer jobs or Summer care for a young food forest

IMG_0867

I look forward to the food forest being more grown up at this time of year -meaning that the the food forest will have more shrubs and trees, making shade, mulch, and cycling more water. I wish I had more of these things right now. But besides being patient, there are several things I am doing to speed up the growth, and make this dream of an established food forest a reality.

First priority is to introduce more species and plants to fill in the huge gaps between the trees. This is what happens in nature where fields begin reverting back to forests from grass.  The species in the open field change from grasses, to woody perennials like goldenrod (Solidago species), then to blackberries (Rubus species), multiflora roses (Rosa multiflora), and dogwoods (Cornus controversa), until oaks and the like begin to establish themselves.

By the time the forest trees start to grow up, there is a thick mulch of blackberry and multiflora canes, nicely manured by all the animals attracted there by the multiflora rose hips in the winter, and blackberries in the summer. Nature is not a “Veganic” gardener.

That being said, when I say ‘adding species,’ I do mean adding animal species as well as plant. I have moved our chicken pens across some of the more open places in the food forest, and the effect on the grass has been amazing. Rather than scraggly short stuff, I have lovely swaths of emerald green -nearly a foot taller than the grass next to it; all the green grass growing in the exact shape of the chicken pens.

This extra grass makes more food my rabbit. She can eat exclusively in-system grass and clover, providing lovely “bunny gold” for adding to the mulched beds.

This mulch has been helpful in killing of the scraggly grass under my trees, since to get rid of any sizable patch with mulch I need all the grass I can get.

Mulching to kill grass illustrates the best way to work with these newly introduced species of plants and animals: keep the life moving. In other words, cycle the life as fast as you can, keep all the species of plants and animals as dependent on each other as you can. That is how an ecosystem is built; through the interaction of a lot of species. If you have grass, mulch with it -or feed it to an animal, wild or domesticated. Whatever the case, keep those nutrients active!

Comfrey and nitrogen fixers are most of what I am planting under the trees, along with some Jerusalem artichokes here and there. They compete with the grass masterfully, and at the same time make more biomass.

Whatever I do, there is a lot to be done, not the least of these being to stand back and observe, so I had better get back out there.

The rules of spacing

I was at a Christmas party in conversation with a local Timken engineer who, hearing I design food forests, wanted to pick my brain on apple trees. He had six trees in two rows of three, well spaced in his backyard. He was throwing out terms about the mainstream organic sprays he was using, and framed his questions expecting me to know some super organic spray, or spray regimen, that would fix his problems of pests and low vigor in general. I don’t think he expected the answer I gave: ‘What’s planted around the trees?’

We often think of the rules of spacing as rules for keeping other plants away from each other. In practice I find the lines blur between species, and enters a much more broad science: it’s what should be included near the plant, as well as what shouldn’t. Between these two aspects, you make or break the majority of fruit tree problems.

The lines often blur between species becuase, let’s face it, plants don’t grow in a vacuum and always have something growing up against them. In this guy’s case, his trees were planted right into his lawn. They were in competition with the grass.

Looking at their history, grass and trees are in most cases nemesis of one another. Trees make forest; but grass needs open space. The setting in most yards of trees with grass between is quite artificial, and only exists because we keep the grass mowed. In any other situation, trees would take over.

The prairies are the kingdom of grass, and these occured because of rain shadows, or areas where circumstances such as the Rocky Mountain range messed with the winds that carry rain, creating droughts in one part of the year, and near flooding in another. Trees don’t like that, because most have relatively shallow roots, as much as 80 percent residing in the top three feet of soil depending on the kind and its conditions; but prairie plants, such as the grasses, and N fixers like senna hebecarpa, put roots down unusually deep, so reach the water table whether rain comes or not.

IMG_2571.JPG
An experiment showing the root growth of Red Delicious apple tree two years after planting.
 Have you ever wondered as you pass woods how the trees survive so close? If you were planting an oak tree in your yard that would someday reach a hundred foot tall, can you imagine the spacing recommendations? They would be over fifty feet apart. Most yards couldn’t fit more than one tree. But in the woods they stand on top of each other, growing for hundreds of years, happy, and healthy.

Studies have shown that trees can grow their roots deep into the ground, but prefer to keep their roots higher in the soil if possible. There is more organic matter, hence nutrients and water, in this layer. If there isn’t, trees will try to put in the work to grow deeper. This is a lot more work, and certainly isn’t their first choice.

What trees really prefer is building networks in which they share and preserve resources. For instance, trees have what is called hydraulic redistibution, which is a fancy term for moving water not only up for their own use, but back down into the soil for storage, and horizontally to other plants. Peter Wholleben, in his book The Hidden Life of Trees recalls his surprise when he found a ring of roots from a beech tree that must have been cut down well over a century beforehand, but still had green, living roots showing above ground. It had no leaves, and the stump was gone. As he explained, citing various studies, the living trees around this ancient (should be dead) tree were feeding it sugars made in their leaves, keeping it alive. Likely, they got some kind of kickback from the extended root system because it allowed them access to more resources.

This is in ancient, established forests, so conditions aren’t quite the same for our young transplants. We can get some similar effects by growing fruit trees in more open settings, or riparian zones. These are zones similar to fencerows and overgrown fields where grasses are just converting to trees. These zones are iconically untidy and wild; but skillful gardeners know the elements of these zones, like clay in a potters hand, have the best potential to form the most beautiful, lush gardens.

Riparian zones have many layers, with notably high numbers of low growing herbaceous and woody shrubs, many of which are nitrogen fixers. The quickest way to simulate this ecology is making ‘guilds’ of plants right around your fruit trees. Here is my manual of bed building for info on quickly clearing grass without tillage. Plan on expanding these plantings every year until the beds around your trees meet. If the tree is older, and larger, the bed should extend at least a couple feet beyond its drip line.

An example guild: 1. Fruit Tree 2. Comfrey 3. Siberian Peashrub 4. Amorpha fruticosa 5. Japanese Wineraspberry 6. Honeyberry 7. Blueberry 8. Turkish Rocket 9. Crambe cordifolia 10. Stepping stones, (or in this case, stepping logs).
Any guild should include at least 2 woody nitrogen fixing plants, about 5 plants that do not fix nitrogen but can be cut for mulch, such as comfrey, or a groundcover of something like mint, then several fruiting shrubs like raspberry or honeyberry, and some perennial vegetables.

This is the best method if you already have fruit trees in the ground, like our engineer friend. If you’re just planning your food forest, Robert Hart, the father of the northern food forests, recommended planting full size or standard fruit trees at recommended spacing for their size, in rows like any orchard, but then semi standard or medium trees, then dwarf trees, then shrubs, then herbaceous plants, then vines to climb and fill in the cracks between them.

Photo credit: Graham Burnett.

I’d recommend mulching as much as you can, and planting that area with a complete planting like this. The space should be completly filled with plants, and will establish faster with less work overall.

This system gives quite attractive results that are increasingly less cost and labor than serial applications of even organic, clay-based sprays, pyrethrums and neems, let alone the more harsh chemicals. There is work later on, but this is of course dabatable, because its mostly harvests of fruit. Sounds like pleasant work to me.

Moles: a link in the trophic chain

“Mole starts with M, and and M is for meat” as I once read. Moles don’t eat much plant material, they mostly eat worms and grubs -meat. What does it mean if you have a high mole population? You have a lot of worms, grubs and the like -a thriving ecosystem to sustain the little diggers.

Farming with Nature: why we welcome moles on the farm (~2min read)

This article gives a little more explanation on how moles benefit their ecology. 

Moles also eat young, ground-dwelling cicada nymphs. We were plagued by the adult cicadas this year. If I can get a higher mole population, perhaps I’ll have fewer of these bugs when they’re next due to emerge circa 2029. That would be nice.

Making friends with rodents

Blurring gray fur and tails pour like a waterfall onto the floor in front of me. A tense minute, and the place is cleared -bare, clean cement floor, and nothing but hushed scurrying sounds all around. I’d just turned on the light.

This was one summer long ago, when several old building were torn down by the Township very near our chicken house. These were an old garage, another chicken pen near it, and a large old barn. They all housed droves of rats. Where did they go when these building fell? Our place.

We had quite a clean operation. When the rats came, we cleaned it to the max, removed all the wood shavings, straw bales, any and all feed -no matter how tight its container, and even some of the chickens. Despite the cleanup, the invasion lasted for months.

They were too smart to fall for traps. Eerily, one of the traps we found set off with no rat in it, had a freshly gnawed twig from the lilac bush right outside the pen stuck in it, the bait removed. My dad stayed up several nights shooting them with pellet guns. He terminated the lives of hundreds, but only recovered a few because the rats began eating their fallen, dragging them back into their holes immediately, or gnawing into them on the spot. To say nothing of a few unfortunate chickens that fell prey when the lights went out.

The rats made this new house their home in short order -with or without resources. They dug enormous piles of soil out from under the cement flooring, brought in food from some place. We had removed everything else.

When specialists begin throwing out statements about harshly mowing orchards to keep rodent and rabbit from gnawing away bark and roots of trees, I am a bit skeptical. These creatures create habitat for themselves and are part of thriving ecologies. They are eaten by almost everything, providing a vital link in the trophic system. If you have ever studied how these systems work, reducing one part of the chain, reduces, or at least effects, all the others following. If you reduce rodents, you by default reduce potential health of the trees you’re trying to protect.

img_2360
A casualty in my parent’s small orchard. This tree was about five years old when snow fell, and a freezing rain covered the snow with a sheet of ice that remained for about two weeks. Rabbits, mice, and voles ate everything they could get at, including large trees like this one. See the gnawed bark at the bottom.

Rodents feed into a very broad system. Finding examples of what happens when rodents are entirely removed is difficult because we have seldom pulled this off in outdoor settings. If we have come close, someone is also fertilizing and pruning a lot to make up for the loss.

Rodents have many immediate effects too. For one, they dig holes, which allow more air and water to percolate into the soil. This is very good for soil health.

It’s interesting to note the trees most immune to damage by rabbits, voles, etc. are single seeded species, like peach and plum. The species most vulnerable are multi-seeded species, like apple and pear. Rodents and rabbits, every couple of years when the food gets scarce, devour the bark off a couple of these trees, killing the trees. If they didn’t these multiseeded species have a higher chance of sprouting on top of each other, and choking each other out.

Only one successful seed is necessary to replace its parent. Rodents are a factor which ensures the chance any young tree grows to adulthood is very, very low. This is a good thing in natural conditions. It means trees are more likely to be well spaced.

But how do we make our tree “the one” that grows to adulthood when we’ve already taken spacing into account?

The most effective move is just installing tree guards; simple spiral guards are fine for young trees; tree guards like these are better for larger trees. Larger trees are less vulnerable to girdling, but I have seen trunks near five inches in diameter girdled to the hard wood if the snow lays thick enough long enough. For these sizes, I am not a fan of corrugated plastic pipe guards because they’re extremely hard to get on and off, often harming the tree in the process. Even covering the trunks with tinfoil or fine wire mesh is better than nothing.

Opaque tree guards also protect from sun scald: when bright sun reflecting off cold snow heats the cold tree bark, making it crack. This isn’t good. Covering the trunk helps prevent it.

Another tactic is to provide food for the rodents (No, I’m not nuts. Keep reading). The fact is, rodents and rabbits will be present whether you like them or not. If you mow the grass, they will dig tunnels. If you remove food, they will find it, and store it.

I’m not the only one recommending this. One extension service informational pamphlet extolled mowing the grass in an orchard to the finest bits to reduce cover, yet recommended throwing out sunflower seeds when the snow fell. This is intended to divert the eminent population of rabbits, voles, and mice -now forced into starvation.

Apparently the specialists are aware their mowing and trapping are only mildly effective, and that the real issue is diverting and blocking the rodents when times get tough, not killing them. Natural predators do that.

It seems most logical to just leave the tall grass and brush -at least in isolated corners, so the rodents can feed themselves.

There are also biological deterrants, such as Sepp Holzer’s bone tar. Here is a forum discussion on the subject. Sepp Holzer explains making bone tar and its use in his book. I own a copy, and quite like it. I have never gone through the trouble of making bone tar though. Tree guards have done the job for me.

There is an idea that planting certain bulbs and other plants around a tree deter rodents and rabbits -especially voles, which eat roots underground. In controlled studies, ground covers like Pachysandra species, and bulbs like daffodils are themselves very unpalatable to rodents. This doesn’t necessarily deter their cozying up to your trees.

I’ve had trees with no guard brutally stripped by rabbits, despite a ring of daffodils around it. Keep in mind, when hunger gnaws, rodents gnaw just about anything -tasty or not. While these plants might deter voles from eating roots, don’t expect these to block the possibility of girdling.

Ecosystems keep a pretty tight control on rodents and rabbits as is. If we simply focus on making a healthy, lush habitat, giving your trees the protection to make them “the one” that succeeds in growing to adulthood, the rodents can function less as your foes and more as your friends. The alternative is certainly not as pretty.

Mastering the Growing Edge

A while back, I launched a series on this blog, post by post unfurling ten plants that cover ground. Like vibrant streaks of color, new concepts and uses popped into these posts, until the original idea was far outgrown.

The series blossomed earlier last week into Mastering the Growing Edge. You could call it a companion to PASSIVE Gardening; although the main focus in MtGE is food forests and perennial vegetables. It ties the concepts of bed building, mulch management, ground covers, and bed builders into a coherent whole.

I was able to once again work with Kindle Direct Publishing to make the digital copy free for your download today, Friday (Feb 3), and Saturday (Feb 4).

If you don’t have a Kindle, don’t worry; almost any device that displays this post can display a Kindle book by simply downloading the free Kindle app here.

I hope to hear your feedback and see the results that follow your new-found knowledge. Like a bud coaxed into bloom, this book is meant to bring the plants of a garden to full luster of growth through healthy pairings. The plants manage a lot of the growth, leaving you more time to smell the roses.

The book cover below is linked to the digital and softcover book’s page -just click.

Fertility

Tillage allows us to neglect for a while the task of replenishing organic matter because it pries from the soil’s fingers more fertility than usual. I read of one study* performed on a field tilled for 60 years without inputs. Problems were becoming apparent, but the farmer was still getting a harvest.

……

It has been the same throughout history: civilizations rise and fall, often as a result of their failing fertility systems. For those that lasted, by restoring to some extent the organic matter, there were some interesting methods.

The first was to simply move from place to place, exploiting the fertility of a site, moving on to a new one once the fertility was gone. This method was practiced by a few Native American tribes.* Their particular method was called “Slash and Burn, where an area of virgin forest was cut and burned. The fertility provided from such a mass of organic matter lasted a while. This is certainly an excellent method when you have ample areas of virgin forest to work with -slash and burn, move on, and allow everything to revert to the chaos of a forest system that would slowly renew the organic matter until, in a couple hundred years, they returned to tear it down and organize it for crops again. Today such a tactic would not last long with our increasingly high population.

Many ancient cultures practiced a similar method by simply leaving the land fallow for a short time between small spans of tilling and harvesting. The ancient Israelites had in their law several different spans of time in which they were not to till a field, with the assumption they would set food by in the prior years of harvest. The usual numbers are three to seven years tilling and harvesting, to one year of lying fallow.

…….

[T]he ancient Egyptians, who were one of the first civilizations to use tillage, had a much more passive method which relied on the Nile river flooding to bring in organic matter from the rainforests upstream. Problem was, if the Nile didn’t flood, there was famine.

What we must realize is we are hardly in a different position today.

…….

In a properly managed no-till garden, we should burn less organic matter in total, but in covering the ground and supplying enough decaying organic matter to sustain the system, we use a lot of material. Bringing it in as mulch rather than broken down compost, we see organic matter in its most bulky state and realize, it’s a lot.

The Ruth Stout method is an excellent example of this. Perhaps one of the most low work, effective no-till garden methods, Ruth Stout grew excellent annual vegetables by covering the ground thickly with mulch, with some additions of manure.

When all this organic matter is added, and moisture is so well preserved by the thick cover of mulch, the soil life responds by building a home for themselves of many tunnels, creating a soil similar in consistency to crumbly chocolate cake.

The technical term for this state of soil is ‘flocculated’. Flocculation occurs when sufficient levels of active calcium are available, pulling particles out of suspension in ‘flocs’, or flakes, making the soil fluffy.

The Stout method gives excellent results in the garden. Yet again, this is not the whole picture. Take this quote for example:

The ”Stout Method” of mulching is a biological transgression similar to, though not as severe as is the social and biological transgression of polluting air and waterways with the industrial wastes. The main characteristics of the ”Stout Method” is that the soil is to be covered constantly with a thick layer of mulch hay, which requires 8 to ten tons of hay per acre annually. Based on average yields, each year 3 to 4 acres of farm soils must somewhere be deprived of organic matter replenishment so that 1 acre of backyard garden plots may get the ”Stout Method” treatment.*

……

Wood chip sources we once got for free are now going to composting companies who sell the finished product by the bag to be dumped on tilled soil that will burn much of the carbon into the atmosphere. A Certified Organic CSA (Community Supported Agriculture) like ourselves can hardly find a source of clean organic matter that doesn’t charge for you to haul away their waste.

Many township yard-waste drop-offs at one time chipped up the material laboriously collected and brought to them by every yard nitpicking denizen to be carted off by the hippies for their organic gardens for free. More and more now, they sell this material to the compost companies.

……

According to the United States Composting Council, there are currently four chemicals likely to end up in compost that do not break down in the composting process. Approximately 150 lawn care, or in general weed killing products, have at least one of them as an ingredient.

Aside from knowing exactly what was applied to your substrate, which in most cases of yard waste scavenging isn’t convenient -if even possible, there is unfortunately no way to tell if your substrate has these killers on them before applying to your plants without expensive testing.

Once in the soil, these toxins effect most garden plants, and can remain there for up to three years before breaking down.

……

The ideal ratio is about 30:1 carbon to nitrogen. Until the substrate given attains something near that ratio, there is little the bacteria can do with it. Fungi play a role in breakdown until the carbon finds the necessary nitrogen, or is simply burnt into the atmosphere.

To put this into perspective: wood chips are approximately 200:1, fresh cut grass 17:1, straw about 60:1 depending on what source you use.

……

If fresh wood chips or straw are mixed into the soil, all that surface area is placed directly in contact with the soil. If no nitrogen is added, the substrate will pull the available nitrogen from the soil, binding up the available nitrogen, and the majority of chemical processes that give fertility.

This is quite a popular mistake in recent years. I have had several friends and clients ask me to look at their garden, recently converted to no-till and mulch, because nothing will grow. In almost all situations, they have bound up the available nitrogen by neglecting the C:N ratio.

Often the tactic that side steps this binding-up issue is to separate compost pile from garden, turning often to speed breakdown. By now you should have an idea what this is doing: burning up your organic matter into the atmosphere. This is why the nutrients used to increase organic matter should be as balanced in the carbon to nitrogen ratio as possible.

…..

While Ruth Stout’s method illustrates the effectiveness of growing annuals with nothing but mulch, PASSIVE creates an ecology which includes its own mulch, and so sets it apart. I here use Ruth Stout’s method as proof annuals can be grown with nothing but mulch. I don’t credit her method as the direct roots of PASSIVE though, I credit its roots to a forest model.

*http://soilandhealth.org/wp-content/uploads/01aglibrary/010120albrecht.usdayrbk/lsom.html

*http://whyfiles.org/2012/farming-native-american-style/

*Dirt Farmer’s Dialogue by C.J. Pank

This is one of the really important chapter from PASSIVE Gardening explaining why the art of in-system fertility is so beneficial to a truly sustainable, healthy, low-work garden. In the later chapters the book explains Chaos Ratio, one of the most powerful tools for managing system fertility and seamlessly transitioning from yard to garden oasis. I hope to get a post out on this subject soon. Until then, I hope you find this of interest.

Growing Amorpha

Deep purple petal over bright orange stamens of Amorpha fruticosa melt into green, spotted little crescents of seed. These ripen in the sun to a dark brown, then white-gray and hold. I kept thinking these seeds would fall off, but even in January when I lately picked some, they were tightly attached.

img_2102

They have a peculiar ability to sprout without cold -unlike most woody perennials that need months of subfreezing temps. They just need heat above 70 degrees F, and up pop little green leaves. Usually I soak the seed for a couple hours before sowing into flats. I start them in February in some years, March in others, but for my climate these both mean heat has to be provided.


I have to be careful with the dry air of indoor heating to keep the seeds wet, so usually cover with some plastic, and water often. We begin heating a small portion of our greenhouse about that time for garden vegetables, so these seedlings can soak up real sunlight from day one.

They are wise little seeds, and spacing their sprouting time -which outdoors would be a fail-safe against late frost and other catastrophes. For me, it’s a great convenience. Out of one ‘source flat’ as I call it, sprouts pop within three days after planting, but keep popping up for several weeks.

Usually I wait until the first true leaves show before I begin transplanting, then clear the flat of any sprouts with true leaves once a week.

Out of the hundreds I have grown, I find it’s best to start the seeds with potting soil, or compost with good levels of nitrogen. From here I separate into small pots or cell flats no larger than 2 inches across, filled with the same kind of nitrogen rich potting soil they sprouted in.

The heat and rate of drying in smaller pots, where the roots can quickly reach the bottom and be air pruned, has given superior results for me. They still develop very deep taproots once in the ground, but this root pruning while in the pot is helpful -in part because it stimulates more branching of the root system. Planting in extra large pots with nitrogen rich soil, many seedlings rot, and must be replaced two or three times over before each pot successfully grows a plant. On the other hand I have tried planting them this early in nitrogen poor soil, and they make little headway.

img_1160

I think this best mimics the situation they would find in nature. Forests and grasslands have a thin layer of nutrient rich, fluffy soil on the surface usually, which quickly becomes clay or whatever the base soil of the area. I want to get the seedlings into nitrogen poor soil to induce nodulation (aka hosting nitrogen fixing bacteria as evidenced by the formation of little nodules). This is spurred on by a lack of nitrogen in the soil. The catch is it takes time for the young plants to find the bacteria and get the symbiosis set up.

Nature’s way seems to be nutrient rich soil at first, then less rich soil as the plant gets bigger, the roots deeper. My contrived biomimicry that gives best results is moving the seedlings once they have filled their small pots and gotten a bit root pruned (not pot bound, as in roots turning back on themselves) into larger pots of whatever size you choose, filled with nitrogen poor soil about 1/3 rd coarse sand. I usually mix nutrient-rich rock powders, such as carbonitite or granite, into this before filling the pots.

Usually I transplant into 4inch pots at this point so they are filled with their roots in a couple of weeks -about the time nodules start to form. Usually this is early June -plenty of time for establishment before fall. Those I don’t get in the ground the first year go into gallon pots by August, which they usually have amply filled by next spring.

I try to avoid keeping Amorpha in pots more than a year. They grow best put in the ground as soon as possible after they have acclimated to the nitrogen poor soil. After years of refining this method, I’ve had transplants pushing 5ft by the end of year one -well on their way to exploding every spring with growth, providing some of the best organic matter for fueling your plant projects.

Where to get the seeds? You might have a plant nearby, which I recommend you snatch some seeds from. Otherwise they’re very affordable, and widely available from Sheffield seeds (my first choice), Oikos Tree Crops (They advertise A. californica, but I’ve gotten their seed -and plants, and compared it against pictures and attributes on the USDA plant database, and they have the name wrong. It’s species fruticosa), or even Amazon if you shop there.

img_2099

The Garden of Mortal Tree

Such gardens arrive after some years of trials, where species themselves indicate their preferences, often in defiance of the dictates of literature. It is fortunate indeed that plants cannot read!

-Bill Mollison Permaculture ll

The sun bleeds a hotter light as it sets in the west, and this slope leans into it. It’s face to the setting sun, backed by trees to the east that swallow the gentle light of morning, days begin in shadow that lingers almost to the heat of midday only to be seared by the red light of evening.

The plants grow from these elements. Red-tan brushes of broomsedge grass (Andropogen) speckles the front in tall clusters like an artist’s idle tools, while at the back, messes of honeysuckle cling on piles of logs below scraggly chokecherries. Near the center, in contrast to the lush green Catalpa tree down the hill, stands the skeleton of what was once an apple tree. This is Mortal Tree, the sun scorched slope next to my house that’s becoming a vibrant, lush, productive food forest.

img_2096

2013

You might say I’m starting from scratch on this fourth acre of scrubby land; but I don’t plan on doing it alone. I know that every plant and tiny animal living here intends as much as I do to make the place burst with life. The aim of all nature is to create more life. My aim is not to take over, it’s to encourage and strengthen the process already at work. All this through carrying out a design.

Design works for me as the bridge between growth the garden wants, and yield I want. The more my design mirrors nature’s design, the more successful the project will be. In Mortal Tree, that design is a self-sustaining organism, every part interacting to make the whole, every part feeding the others, in care and nutrients, demanding little intervention from me.

Mortal Tree is the center of this design. Paths radiate from this point in fractile, lightning-like arms, and around this point the intensive planting starts -at the “nucleus” of the garden, growing out. The rest I let grow wild, mowing the grass and weeds with the quiet swing of my scythe, gathering excellent mulch. This mulch is fertilizer, moisture retention, and a tool for clearing space my edible plants and fruit trees need. It’s my main tactic, directing free growth of the ecology into my designs of hungry crops.

I’m experimenting with a no-till grain patch, fine-tuning PASSIVE gardening, enjoying the productive beauty in polycultures full of fruit trees and perennial vegetables. Nut and more fruit trees are scattered through the wild growth further down the hill that would perform far better if I had the mulch for them, but there lies my biggest problem:

It’s easy with the desire to power more plantings to overtax the free growth, and damage this delicate ecology. The current design has its limits. Over time, the area of free ecology I harvest for mulch is becoming smaller than the area producing food. What will happen when the need for fertility is greater than the supply?

I watch for what the garden offers. Mirroring the designs of nature in the yields, the design is improving. I’m using running plants to manage weeds, plants that produce massive amounts of mulch in the organized plantings to cycle nutrients and provide cover that protects the ground, and nitrogen fixers that can meet high demands of the hungry production plants. Slowly but surely, the two ends of the equation -wild carefree and productive, labor intensive -are drawing close.

IMG_2862

I have to remember design is only so good as the nature that informs it. Nature is only so good as the life that fills it. No matter how refined my designs become, they are still nature. They house the light that bleeds from the sun, stretching up as growing plants, spuring on change in every aspect. Sometimes that change is good, sometimes not so good; but with the hope of achieving an ever more harmonious design to harness this light, through the changes each day brings, this garden, and its designer, lean into it.

For those of you new to this blog, “The Garden of Mortal Tree” used to be my About page, but after placing it in the Visual Archive, it fell out of existence. This is a major overhaul of that page that better reflects the present Mortal Tree.